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Abstract— Structural intervention cardiology (SIC) inter-
ventions are crucial procedures for correcting heart valves,
wall, and muscle form defects. However, the possibility of
embolization or perforation, as well as the lack of transparent
vision and autonomous surgical equipment, make it difficult for
the clinician. In this paper, we propose a robot-assisted tendon-
driven catheter and machine learning-based path planner
to overcome these challenges. Firstly, an analytical inverse
kinematic model is constructed to convert the tip location in
the Cartesian space to the tendons’ displacement. Then inverse
reinforcement learning algorithm is employed to calculate the
optimal path to avoid possible collisions between the catheter tip
and the atrial wall. Moreover, a closed-loop feedback controller
is adopted to improve positioning accuracy in a direct distal
position measurement manner. Simulation and experiments are
designed and conducted to demonstrate the feasibility and
performance of the proposed system.

I. INTRODUCTION

SIC procedures allows to treat intracardiac pathologies
through the transcatheter implantation of repair or replace-
ment devices (Fig. 1). Initially conceived to extend treatment
to patients uneligible to open-chest surgery, SIC procedures
were becoming increasingly popular as first-line treatment
as they are associated with reduced trauma, shorter hos-
pitalization time, and comparable effectiveness vs. open
chest surgery structural heart disease (SHDs) [1]. On the
other hand, SIC procedures are not ergonomic, technically
demanding, as the operator must maneuver the proximal end
of the catheter to define the motion of the distal end in the
unconstrained and dynamic intracardiac environment, and
characterized by a steep learning curve, with the operator
experience associated with the procedural success [2]. As a
result, complex SIC procedures are accessible only at few ex-
cellence clinical centers with highly skilled and experienced
operators [3].

The ARTERY project intends to advance the area of
SIC by introducing a a variable shared autonomy robotic
platform for intra-procedural support, which is currently
underdevelopment using the robotization of the commercial
MitraClipTM (MC) system as initial benchmark. The MC
system allows to treat mitral regurgitation by percutaneously
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implanting a clip that grasps the valve leaflets (Fig. 1).
The clip is deployed by a catheter, which is inserted in
the femoral vein, driven to the inferior vena cava, the right
atrium and then into the left atrium, where it is steered to
target the region of the mitral leaflets to be grasped. One
of the project’s key goals is to provide reliable autonomous
navigation in the left atrium, which can be considered an
unconstrained environment due to its shape and size, using
ad hoc control software and artificial intelligence.

Fig. 1. Positioning of the MC on the mitral valve. The side view shows
a four-chamber section of the heart: the catheter arrives from the inferior
vena cava (in blue), enters the right atrium, and reaches the left atrium via
a trans-septal approach. The positioning of the MC is shown in detail in the
atrial view: the clip anchors the free margin of the two mitral leaflets and
keeps them locally in contact.

In this paper, we suggested a robotic-assisted approach
(Fig. 2) to address the challenge in this research. Firstly,
Cosserat rob theory (CRT) was employed for the kine-
matic model of the tendon-driven robotic catheter, which
mapped the tip location in the task space with the tendons’
displacement in the actuation space. Then, comparing the
recent advances in learning based methods in path planning,
we deployed Learning from Demonstration (LfD) algorithm
along with Proximal Policy Optimization (PPO) policy for
training an artificial intelligent agent to plan an optimized
trajectory toward the target position. Furthermore, we de-
signed an autonomous robot-assisted platform based on the
commercially-available MC system developed by Abbott,
which we combined with our algorithm. Finally, to validate
the suggested strategy, extensive experiments were carried
out in a patient-specific physical phantom.
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Fig. 2. Workflow of the robotic-assisted system

II. RELATED WORKS

A. Kinematic Modelling

The coupling between the tendons and the backbone, as
well as the kinematic or static assumptions of the backbone,
were the key topics of discussion while designing a tendon-
driven continuum robot (TDCR). There were two dominant
types of structures of attaching tendons on the backbone,
which were using two spacer disks to partially constrain the
tendon path within each subsegment and using a large inner
lumen to guide the tendons along the backbone. Partially
constrained tendons were modeled as forces and moments
operating on the attached disk. On the other hand, due to the
fully constrained tendon path the forces could be equivalent
to a distributed load, which is equal and opposite to the
internal force of the backbone[4].

The most common approach to model the backbone was
the piecewise constant-curvature approximation, in which the
section could be assumed to undergo planar deformation. The
shape of the robot had been simplified as an arc geometry
without the torsion effect [5]. To overcome this problem, Su
et al. proposed an approach to approximate a TDCR as a
serial robot link by torsion springs. However, the stiffness
of the springs and the length of each link were dependent
on the external force and moment[6]. Nowadays, the most
accurate model was the variable curvature approach, which
was a finite element method based on the CRT. The backbone
was represented by a fixed number of points with six degrees
of freedom, named nodes. The configuration of the TDCR
could be estimated by solving the equilibrium equations for
all the nodes with the boundary conditions [7], [8].

B. Path Planning

Intracardiac path planning was not well explored in re-
cent studies. In one study, a simple algorithm had been
proposed that plans a straight line from the catheter tip to
the intracardiac target position. However, the system should
be improved by accommodating different curves to avoid
anatomical obstacles [9]. Another recent and novel method
exploited wall-following algorithm [10]. This approach em-
ployed thigmotactic algorithms that achieved autonomous
navigation inside the heart by creating low-force contact
with the tissue and then following tissue walls to reach a
goal location. Its performance on autonomously controlled
robotic catheter outperforms that of an experienced clini-
cian. Recently, learning based methods had gained massive
attention, and they were also proposed for surgical procedure
such as intravascular [11] or neurosurgical [12] cases.
Among the learning algorithms, different sub-classes could
be distinguished, LfD and Deep Reinforcement Learning
(Deep RL) being the two dominant categories. In the LfD
paradigm, human demonstrations were used to obtain a

reference trajectory for the desired task. In this case, the
catheterization demonstrations would be done by an expert
surgeon. Subsequently, a learning algorithm is exploited to
extract the key features of this trajectory. This enabled the
robot to perform the task on its own, even under different
conditions [13]. It had been shown that with this kind of
algorithm improvements over manual catheterization can be
obtained [14]. In autonomous and semi-autonomous intrac-
ardiac surgeries, Deep RL could be exploited to overcome
the unpredictability of movements and errors introduced by
the operator that could affect the accuracy of the traced path.

C. Motion Control

Loschak et al. [15] designed an automatic ultrasound
catheter with an EM tracker, four brushed DC motors for
each degree of freedom, and a position controller with a
1.6mm position error in the open 3D space. Moreover, Jungh-
wan et al. proposed a Model-free position control algorithm
using electromagnetic (EM) tracker and tension feedback.
Their cardiac ablation catheter had a minimum position error
up to 0:5� 0:2mm within 7� 2sec [16]. A probabilistic
kinematic model of a catheter robot was studied by Bing
Yu et al. [17] to take into account intrinsic non-linearities
and external disturbance. A proportional–integral–derivative
(PID) controller was implemented for closed-loop position
control, and the results indicated that a simulated catheter
could follow the centerline of the aorta with an accuracy of
1:2�1:067mm.

III. METHODOLOGY

A. Kinematic model of the catheter

Fig. 3. Sketches of the catheter: (A) Kinematics of the CRT maps the
distal position pd and tendon displacement Ddi; (B) Free-body diagram
of the catheter subjected to external distributed forces f (s) and moments
l(s); internal forces n(s) and moment m(s) over the backbone length s are
represented.

Kinematics based on CRT is implemented, in which the
robotic catheter was assumed to be functioning in a quasi-
static process to relate the distal end position (pd) and
tendon displacement (Ddi). The tendons are assumed to
follow a continuous curve parallel to the backbone, implying
that tendon pathways are totally constrained. A number of
nodes positioned along the backbone represent the catheter’s
configuration, and the deformation of the backbone can be
computed using the CRT. The reference frames composed by
a rotation matrix (R) and a pose vector (p) are attached to the
nodes (Fig. 3 A), and its evolution along the body length (s)
was described by means of a system of differential equations:



Fig. 4. Complete robotic-assisted surgical system: (A) catheter actuation plant; (B) electrical devices and power source; (C) details of the motorized
stabilizer for the bending in the medio-lateral plane; (D) details of the motorized stabilizer for the bending in the antero-posterior plane and the linear
actuator; (E) patient-specific physical phantom; (F) EM tracking system and the EM sensor; (G) computers used for running the ROS environment on
Ubuntu 20.04 and the Unity simulation on Windows 10.

Ṙ(s) = Ṙ(s)û(s)

ṗ(s) = R(s)v(s)
(1)

We solve the equilibrium equations between internal forces
and moments, n(s) and m(s), and external forces and mo-
ments, f (s) and l(s), for each node to obtain u(s) and v(s),
which are the values of angular and linear rate of change of
each node.

ṅ(s)+ f(s) = 0 (2)
ṁ(s)+ ṗ(s)�n(s)+ l(s) = 0

At last, the internal force and moment are related with u(s)
and v(s), exploiting constitutive material laws:

n(s) = R(s)Kse(s)(v(s)�v�(s))
m(s) = R(s)Kbt(s)(u(s)�u�(s))

(3)

where

Kse(s) = diag(GA(s);GA(s);EA(s))

Kbt(s) = diag(EIxx(s);EIyy(s);GJ)
(4)

Kse(s), Kbt(s) 2 R3�3 matrices are stiffness matrices,
which are determined by the mechanical properties and the
geometry of the catheter. A(s) is the cross sectional area;
I(s) and J are the corresponding second moment of area and
the polar moment of inertia, respectively. G and E represent
the shear modulus and the Young modulus of the material,
respectively.

Under the assumption of fully constrained tendon path,
these tendons are considered as equivalent distributed force
and moment along the entire length of the backbone and

integrated as a part of internal force n(s) and moment m(s)
of the backbone. Moreover, the gravity force is treated as a
combination of distributed external forces f (s) and moments
l(s) (Fig. 3 B).

Combining equations (1), (2), (3), we obtain the complete
set of CRT differential equations, which are numerically
solved via Shooting method [18]: the solution is searched
for iteratively until boundary conditions are satisfied.

B. Design of the path planner

Path planning is a mathematical problem to find the
optimum sequence of valid configurations to move from one
point (source) to another point (destination). Path planning
algorithms generate a geometric path from the source to the
destination, possibly passing through predefined via-points
while considering blocked areas [19]. The configuration
space is found as a subset of free space. The main challenges
of our project in robotic path planning are as follows:
� Convergence, ensuring at least one valid solution by

reaching the destination defined as target configuration
(qt ).

� Optimality, considering the timing (time) and the mini-
mum (minDist) and the average (avgDist) distance.

� Geometric and movement restrictions of the catheter,
evaluating the curvature (curv) and the length (len).

� Geometric and movement restrictions associated with
the intracardiac environment and with obstacles to be
avoided (obst)

The 3D geometry of the anatomical structures of inter-
est (i.e., right and left atria and ventricles, inferior and
superior vena cava, femural veins, pulmonary artery) was



reconstructed from a Computed Tomography (CT) scan (di-
mension 512�512�347) provided by IRCCS Ospedale San
Raffaele, yielding the simulation environment to train a Gen-
erative Adversarial Imitation Learning (GAIL) model in pre-
operative path planning. Using 3D Slicer software [20], CT
images were manually segmented, and 3D reconstructions
were subsequently smoothed and filtered with a Gaussian
filter. The resulting discretized solid geometries were hol-
lowed in MeshMixer software [21] to obtain the final meshes
to create the simulated scene. The anatomical environment
in which the agent (i.e., the catheter) moves was finally
reconstructed in the Unity 3D game engine [22] .

We used a combination of Behavioral Cloning (BC) [23]
and GAIL [24] reward signal to find the optimized pre-
operative path from the entry to the target poses. The
former method lets the agent reproduce a close copy of
the demonstration, whereas the latter deploys an adversarial
approach using a discriminative next to a generative network.

The path planner takes in input the starting configuration
(qs) of the agent, consisting in its pose (3 positions and 3
rotations in the 3 axes expressed in Euler angles) and the
target configuration (qt ). The output of the path planning
algorithm is a pre-operative path (P), i.e., an admissible
sequence of agent configurations (qagentt ) from the starting
one qagent0

== qs to the target one qagentn�1
== qt , where n

is the number of configurations that generate the path P and
is equal to #P. Hence, P can be expressed as:

P = fqagent0 ; qagent1 ; :::; qagentn�1g (5)

Our catheter represents the agent, that is the learner and
the decision maker. It is placed in the environment and it
can take actions (at), moving towards the target (at) with
a combination of the translation along its X-direction and
the rotation about its Z-direction and Y-direction. With these
actions the environment can give positive or negative rewards
(rt ), which are usually scalars, to the agent.

The reward function, R(τ) = rt , associated with each time
step, t, is shaped in order to make the agent learn to optimize
the path, according to three main requirements:
� agent steps number (t) minimization
� obstacle avoidance with qagent =2 obst
� target position error (t pe) minimization, where t pe is the

Euclidean distance between the needle’s final position
(p(qagent) and the target position (p(qt)),

The reward (rt ) is defined as:

rt =


rstepmax if t � tmax
robst + rstep if qagentt 2 obst
rtarget + rTPE + rstep if qagentt == qt
rstep otherwise

(6)

� A negative reward, rstepmax , is given if the the cumulative
number of steps (t) exceeds the predefined maximum
number of steps allowed for (tmax).

� A negative reward, rstep = � 1
tmax

, is given at each step
t of the agent in order to obtain a reduction in the
computational time.

� A negative reward, robst , is given if a collision is
detected between the agent (qagentt ) and the obstacles
(obst).

� A positive reward, rtarget , is given upon reaching the
target (qtargett ).

� A negative reward is given, rTPE =
�
∥∥p(qt)�p(qagent)

∥∥, upon reaching the target in
order to minimize the difference between the target
(p(qt)) and the agent final position (p(qagent)).

The optimal parameters of the R(τ) = rt , obtained with an
empirical method, are reported in Table I.

TABLE I
REWARD FUNCTION PARAMETERS VALUES

rstepmax robst rtarget tmax
-1 -1 +3 5000

In the training process the agent learns to maximize its
cumulative reward based on a PPO, taking into account the
environment state. During the training phase the BC, which
corresponds to the intrinsic reward, is active for all the steps
(t). Values associated to the training parameters can be found
in Table II

TABLE II
DEPLOYED LEARNING CONFIGURATION.

Parameter strength gamma
BC 0.5
extrinsic 1.0 0.99
intrinsic 0.02 0.99
GAIL 1.0 0.99

C. Actuation plant and control

A sheath catheter and a delivery catheter are included in
the MC system. During the operation, the delivery catheter
is inserted into the sheath catheter and deploys the clip to
the desired position above the mitral valve. After that, the
surgeon can regulate the clip clamping the mitral valve using
the so-called delivery catheter handle.

In this paper, we propose a catheter actuation plant ((Fig.4
A) with three degrees of freedom: medio-lateral bending in
the coronal plane, anterior-posterior bending in the sagittal
plane, and translational insertion inside the sheath catheter.
As a result, we design a motorized stabilizer, which is com-
posed of three primary mechanical and electrical elements:
� Nema 23 Stepper motors (JoyNano) to pull the tendons

and to allow for medio-lateral and anterior-posterior
bending. The control precision (1:8�� 0:09� for each
step) and maximum holding torque (0.6 Nm) are the
most important criteria to consider when selecting step-
per motors . Each motor is controlled by a DM556
driver (Jadeshay), which has eight current levels with a
resolution of 0.5 A. An Arduino UNO board (Arduino)
is used to output the control signal (Fig.4 B);

� Nema 17 linear actuator (SainSmart) that converts the
rotation of the motor’s shaft into a translation movement



in order to precisely insert the delivery catheter inside
the sheath catheter. There are two critical requirements:
great precision (�0,03 mm on the required position) and
the ability to carry a structure, which is the maximum
axial load of 10 kg;

� Oldham adapters-couplings (RS components) that con-
nect the shaft of the delivery catheter to the shafts of
the motor. This type of adapters is chosen because of its
capacity to resist a 5mm misalignment between shafts.

We designed the entire system in Solidworks (Dassault
systems) and 3D printed all of the structural components of
the motorized stabilizer (Ultimaker 3S, Ultimaker B.V.) using
PLA materials (Fig. 4 C, D). Then, we assembled the catheter
actution plant and inserted it inside the sheath catheter, which
was placed on a phantom (Fig. 4 E). In addition, we tracked
the position of the sheath with the Aurora EM tracking
system (NDI, Inc.). The Aurora generator was placed aside
the tip of the catheter to generate the magnetic field. The
EM sensor was attached to measure the real pose of the tip
of the catheter with respect to its base, i.e., the insertion
point in the septum (Fig.4 F). All the algorithms were run
on a PC running Ubuntu 20.04 (PC1), except for the path
planner, which run in Unity on a different PC (PC2) equipped
with a Windows 10 operating system. Those two computers
were connected by an Ethernet cable and exchanged data
by ROSbridge based on the Web-Socket communication
protocol (Fig.4 G).

Furthermore, a PID controller was employed to calculate
the mismatch between the desired position (pd) and the
measured position (pm) and to apply a correction to increase
the control precision. We used the Ziegler–Nichols method to
tune the parameters of the PID controller, i.e., the coefficient
of the proportional term (Kp), of the integral term (Ki), and
of the derivative term (Kd).

Finally, the control scheme was implemented thanks to
the integration of the inverse kinematic model and the actu-
ation leds, which was accomplished using the ROS (Robot
Operating Syste, Noetic) middelware framework represented
in Fig. 5. Starting from the desired pose (pd), the inverse
kinematic model computes the tendons’ displacement (Ddi)
that is provided to the plant. When the actuation is complete,
the ROS topic ”Finish actuation” is activated, and the PID
controller starts to compare the desired pose (pd) to the
measured one (pm), generating a new position (pr) that
is conveyed to the inverse kinematic model, allowing the
adjustment of the position. When the error of the clip pose
falls below a predefined threshold, the ”conclusion” ROS
topic confirms the end of the robotic procedure.

IV. EXPERIMENTAL SETUP AND PROTOCOL

A. Experimental Setup

To evaluate the robotic-assisted surgical system, an experi-
mental platform including a silicon anatomical phantom was
developed (Fig.6). The platform consisted in a deformable
model of femoral vena cava and inferior vena cava and in
rigid replicas of the fossa, i.e., the portion of the interatrial

Fig. 5. ROS network scheme

Fig. 6. Workflow process for the patient-specific physical phantom. (A)
Segmentation and building up the 3D anatomical model; (B) Casting mold
and components CAD design; (C) 3D printing components; (D) Post-
processing for the casting mold; (E) Perparing silicon and casting; (F)
Assembling all the components

septum that is punctured by the catheter in the real procedure,
and of the mitral valve. Three holes were present in the fossa
replica, as if the latter was already punctured. The geometry
of the vessel and the mutual position of vessels, fossa and
mitral valve was defined based on CT images to replicate this
key feature of the real intracardiac structure. To this aim,
manual segmentation of CT images and smoothing of the
reconstructed geometry were performed in 3D Slicer (Fig.6
A). The 3D computational model was imported into Fusion
360 (Autodesk) to define the geometry i) of the internal
and external casts devoted to the molding of the deformable
vessel and ii) of the rigid components of the set-up, i.e.,
mitral valve, fossa, housings designed to hold the deformable
vessel, and heart base (Fig.6 B). Of note, the heart base
included four pillars devoted to performing the subsequent
calibration procedure.

Casts and rigid components were 3D printed (Ultimaker
3S, Ultimaker B.V.) by PLA and the Breakaway materials as
support because of their geometrical complexity (Fig.6 C).
The internal cast model and the inner surface of the external
cast were cured by polishing with sandpaper and covered
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